Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100822

RESUMO

Amphiphilic kanamycins derived from the classic antibiotic kanamycin have attracted interest due to their novel bioactivities beyond inhibition of bacteria. In this study, the recently described 4″,6″-diaryl amphiphilic kanamycins reported as inhibitors of connexin were examined for their antifungal activities. Nearly all 4″,6″-diaryl amphiphilic kanamycins tested had antifungal activities comparable to those of 4″,6″-dialkyl amphiphilic kanamycins, reported previously against several fungal strains. The minimal growth inhibitory concentrations (MICs) correlated with the degree of amphiphilicity (cLogD) of the di-substituted amphiphilic kanamycins. Using the fluorogenic dyes, SYTOXTM Green and propidium iodide, the most active compounds at the corresponding MICs or at 2×MICs caused biphasic dye fluorescence increases over time with intact cells. Further lowering the concentrations to half MICs caused first-order dye fluorescence increases. Interestingly, 4×MIC or 8×MIC levels resulted in fluorescence suppression that did not correlate with the MIC and plasma membrane permeabilization. The results show that 4″,6″-diaryl amphiphilic kanamycins are antifungal and that amphiphilicity parameter cLogD is useful for the design of the most membrane-active versions. A cautionary limitation of fluorescence suppression was revealed when using fluorogenic dyes to measure cell-permeation mechanisms with these antifungals at high concentrations. Finally, 4″,6″-diaryl amphiphilic kanamycins elevate the production of cellular reactive oxygen species as other reported amphiphilic kanamycins.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Canamicina/química , Canamicina/farmacologia , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fungos/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
2.
Front Microbiol ; 5: 671, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538692

RESUMO

K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20's antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate (FITC), 20-25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30-80% in 15 min) of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

3.
PLoS One ; 9(8): e104946, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25127450

RESUMO

Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken) cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918) did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2-3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas) and Cucumis sativus (cucumber) plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods.


Assuntos
Depsipeptídeos/metabolismo , Fabaceae/microbiologia , Proteínas Fúngicas/metabolismo , Insetos/microbiologia , Metarhizium/fisiologia , Micotoxinas/metabolismo , Animais , Depsipeptídeos/análise , Fabaceae/química , Fabaceae/fisiologia , Proteínas Fúngicas/análise , Micotoxinas/análise
4.
FEBS Lett ; 569(1-3): 272-6, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15225647

RESUMO

Sphingoid base C4 hydroxylation is required for syringomycin E action on the yeast plasma membrane. Detergent-insoluble glycolipid-enriched membranes (DIGs) from a yeast strain lacking C4 hydroxylated sphingoid bases (sur2delta) are composed of linear membrane fragments instead of vesicular structures observed for wild-type DIGs, though they have similar lipid compositions and amounts of DIG marker proteins. Light-scattering bands collected from sur2delta after centrifugation of Triton X-100-treated cell lysates in continuous density gradients have lower buoyant densities than that of the wild-type. The results show that C4 hydroxylation influences the physical and structural properties of DIGs and suggest that syringomycin E interacts with lipid rafts.


Assuntos
Glicolipídeos/metabolismo , Lipídeos de Membrana/metabolismo , Saccharomyces cerevisiae/fisiologia , Esfingolipídeos/metabolismo , Esfingolipídeos/farmacologia , Fracionamento Celular , Membrana Celular/metabolismo , Centrifugação com Gradiente de Concentração , Detergentes , Saccharomyces cerevisiae/efeitos dos fármacos , Solubilidade
5.
Biochim Biophys Acta ; 1618(1): 17-24, 2003 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-14643929

RESUMO

The roles of putative active site residues of the Saccharomyces cerevisiae sphingolipid C-4 long chain base hydroxylase (Sur2p) were investigated by site-directed mutagenesis. The replacement of any one of conserved His residues of three histidine-rich motifs with an alanine eliminated hydroxylase activity in vivo and in vitro, indicating that they are all essential elements of the active site. An additional conserved His residue (His 249) outside of the histidine-rich cluster region was also found to be crucial for activity. Additional mutants altered in residues in close proximity to the histidine-rich cluster were generated. In order to determine their roles in hydroxylase vs. desaturase activities, residues were replaced with conserved residues from the yeast Delta7-sterol-C5(6)-desaturase, Erg3p. Residues Phe 174, Asn 182, Ser 191, Leu 196, Pro 199, Asn 266, Tyr 269, Asp 271 and Gln 275 appear to be additionally important elements of the active site but their conversion into corresponding Erg3p residues did not lead to a gain in desaturase activity. It is concluded that Sur2p is a membrane-bound hydroxylase that belongs to the diiron family of eight-histidine motif enzymes.


Assuntos
Oxigenases de Função Mista , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Esfingolipídeos/metabolismo , Sequência de Aminoácidos , Antifúngicos/farmacologia , Histidina/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos Cíclicos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...